Qi Shutong

▼ st.qi@mail.utoronto.ca

+1-437-344-6913

shutong.space

EDUCATION

University of Toronto (UofT)

Toronto, Canada

Ph.D. Student, Electrical and Computer Engineering

Sep. 2020 - Oct. 2025 (Expected)

Research topic: Physics-Informed Machine Learning for Electromagnetic and Multiphysics Modeling

Beihang University (BUAA)

Beijing, China

B.Eng., Electronic and Information Engineering

Sep. 2016 - Jun. 2020

Excellent Graduate

RESEARCH EXPERIENCE

University of Toronto, Department of Electrical and Computer Engineering

Toronto, Canada

Sep. 2020 - Now

Research Assistant, Advised by Professor Costas D. Sarris

- Developed a hybrid CNN-LSTM model to predict S-parameters from planar circuit layouts, enabling rapid signal integrity analysis from geometry and material inputs.
- Designed a physics-informed deep curl operator for fast, generalizable electromagnetic solvers, achieving over 100× speedup over FDTD in uncertainty-aware design and modeling tasks.
- Established a hybrid Physics-Informed Neural Network (PINN) with finite-difference time-stepping, enabling unconditionally stable time-domain simulations of wave propagation.
- Pioneered an unsupervised PINN-U-Net framework for coupled electrothermal simulations, supporting layout-aware multiphysics analysis in reliability-critical systems.

Beihang University, School of Electronic and Information Engineering

Beijing, China

Research Assistant, Advised by Associate Professor Qiang Ren

Sep. 2018 - Jun. 2020

- Utilized the Finite-Difference Frequency-Domain (FD-FD) method for generating an electromagnetic scattering database.
- Developed a deep neural network (U-net) to accelerate the simulation of 2-D and 3-D electromagnetic scattering problems using the FD-FD approach.

Dartmouth College, Department of Computer Science

Hanover, USA

Research Assistant, Advised by Assistant Professor Xing-dong Yang

Jun. 2019 - Sep. 2019

• Conducted antenna radiation pattern simulations for optimizing communication performance.

SKILLS

• Programming languages: Proficient in Python and MATLAB. Familiar with C and C++.

- Technologies & Frameworks: Extensive experience with Python libraries and frameworks, including **PyTorch**, **GPyTorch**, **NumPy**, **pandas**, **Scikit-learn**, and **Keras**. Proficient in using version control with **Git** and job scheduling with **Slurm** on HPC clusters, and working in **Linux-based environments**.
- Strong background in electromagnetic theory and numerical methods, particularly FDTD and FEM.
 Hands-on experience with industry-standard simulation tools, including ANSYS HFSS, Lumerical,
 COMSOL Multiphysics, CST Studio, and FlexCompute Tidy3D.
- TOEFL: 105

SELECTED PUBLICATIONS

- Shutong Qi and Costas Sarris, "Fast Modeling of Defect Periodic Structures with a Physics-Informed Deep Operator Network," in submission to IEEE Antennas and Wireless Propagation Letters, <u>TechRxive</u>.
- Shutong Qi and Costas Sarris, "Physics-Informed Deep Operator Network for 3-D Time-Domain Electromagnetic Modeling," in *IEEE Transactions on Microwave Theory and Techniques*, doi: 10.1109/TMTT.2024.3521389.
- Shutong Qi and Costas Sarris, "Hybrid Physics-Informed Neural Network for the Wave Equation with Unconditionally Stable Time-Stepping," in IEEE Antennas and Wireless Propagation Letters, doi: 10.1109/LAWP.2024.3355896.
- Shutong Qi and Costas Sarris, "Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks," in IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 8, pp. 49-59, 2023, doi: 10.1109/JMMCT.2023.3236946.
- Shutong Qi and Costas Sarris, "Deep Neural Networks for Rapid Simulation of Planar Microwave Circuits Based on their Layouts," in IEEE Transactions on Microwave Theory and Techniques, 2022, doi: 10.1109/TMTT.2022.3210229.
- Shutong Qi, Yinpeng Wang, Yongzhong Li, Xuan Wu, Qiang Ren and Yi Ren, "2D Electromagnetic Solver Based on Deep Learning Technique," in IEEE Journal of Multiscale and Multiphysics Computational Techniques, 2020, 5: 83-88.
- Shutong Qi and Costas Sarris, "Coupled Electromagnetic-Thermal Analysis for Temperature-Dependent Materials with Physics-Informed Neural Networks," in 2024 IEEE/MTT-S International Microwave Symposium, Washington D.C., USA, 2024.
- Shutong Qi and Costas Sarris, "Physics-Informed Neural Networks for Multiphysics Simulations: Application to Coupled Electromagnetic-Thermal Modeling," in 2023 IEEE/MTT-S International Microwave *Symposium*, San Diego, CA, USA, 2023, pp. 166-169, doi: 10.1109/IMS37964.2023.10188015.
- More co-authored papers can be found on my Google Scholar profile.

AWARDS & ACHIEVEMENTS

IEEE Microwave Theory and Technology Society Graduate Fellowship

Jun. 2020

• Excellent Graduate, Beihang University

Feb. 2024